The Search for BP's Oil

At several more research stations near the wellhead, the WeatherBird II finds the ocean floor coated in similar muck. The closer the boat gets to the wellhead, the more black matter there is in the sediment. And Hollander is disturbed. The abnormal layer of sediment is up to five times thicker than it was when he collected samples here in August. The oil's presence on the ocean floor didn't diminish with time; it grew. And, he points out, "the layer is distributed very widely," radiating far out from the wellhead.

But what concerns him even more are the thick black lines. "That black horizon doesn't happen," he says. "It's consistent with a snuff-out." Healthy sea-floor mud is porous and well oxygenated, with little critters constantly burrowing holes from the surface sand to the deeper mud, in the same way that worms are constantly turning over and oxygenating soil in our gardens. But the dark black lines in the sediment seemed to be acting as a sealant, preventing that flow of life. "Something caused an environmental and community change," Hollander explains. It could have been the sheer volume of matter falling to the bottom, triggering a suffocation effect, or perhaps it was "a toxic response" to oil and dispersants.

Whatever it was, Hollander isn't the only one observing the change. While we are at sea, Samantha Joye, an oceanographer at the University of Georgia, is leading a team of scientists on a monthlong cruise. When she gets back she reports seeing a remarkably similar puddinglike layer of sediment. And in trips to the ocean floor in a submersible, she saw dead crustaceans in the sediment and tube worms that had been "decimated." Ian MacDonald was one of the scientists on the trip. "There were miles of dead worms," he told me. "There was a zone of acute impact of at least eighty square miles. I saw dead sea fans, injured sea fans, brittle stars entangled in its branches. A very large area was severely impacted." More warning signs of a bottom-up disaster.

A week after Hollander returned from the cruise, Unified Area Command came out with its good news report on the state of the spill. Of thousands of water samples taken since August, the report stated, less than 1 percent met EPA definitions of toxicity. It also claimed that the deepwater sediment is largely free from BP's oil, except within about two miles of the wellhead. That certainly came as news to Hollander, who at that time was running tests of oiled sediment collected thirty nautical miles from the wellhead, in an area largely overlooked by the government scientists. Also, the government scientists measured only absolute concentrations of oil and dispersants in the water and sediment before declaring them healthy. The kinds of tests John Paul conducted on the toxicity of that water to microorganisms are simply absent.

Coast Guard Rear Adm. Paul Zukunft, whose name is on the cover of the report, told me of the omission, "That really is a limitation under the Clean Water Act and my authorities as the federal on-scene coordinator." When it comes to oil, "it's my job to remove it" — not to assess its impact on the broader ecosystem. He pointed me to the NOAA-led National Resource Damage Assessment (NRDA) process, which is gathering much more sensitive scientific data to help it put a dollar amount on the overall impact of the spill and seek damages from BP and other responsible parties.

Unlike the individual and class-action lawsuits BP is rushing to settle, it will be years before a settlement is reached. That means more time to wait and see how fish stocks are affected by egg and larvae exposure. And according to Robert Haddad, who heads the NRDA process for NOAA, any settlement will have "reopener clauses" that allow the government to reopen the case should new impacts manifest themselves.

Still, it's not at all clear that NRDA is capable of addressing the dangers being exposed by Hollander and the other independent scientists. The federal damage assessment process is built on the concept of "ecosystem services," which measures the value of nature according to how it serves us. How many fish were fishermen unable to catch because of the disaster? And how many tourism dollars were lost when the oil hit the beaches? Yet when it comes to the place where most of the spill damage was done — the deep ocean — we are in no position to answer such questions. The deep ocean is so understudied that we simply don't know what "service" those dead tube worms and corals would have provided to us. All we know, says MacDonald, is that "the ecosystem depends on these kinds of organisms, and if you start wiping them out, you don't know what happens." He also points out, as many ecologists do, that the entire service model is flawed. Even if it turns out that those tube worms and brittle stars do nothing for us, "they have their own intrinsic value — it matters that these organisms are healthy or not healthy." The spill "is an opportunity for us to find a new way to look at ecological health."

It is more likely, however, that we will continue to assign value only to those parts of nature from which we directly profit. Anything that slips beyond the reach of those crude calculations, either because it is too mysterious or seemingly too trivial, will be considered of no value, its existence left out of environmental risk assessment reports, its death left out of damage assessment lawsuits. And this is what is most disturbing about the latest rush to declare the gulf healthy: we seem to be once again taking refuge in our ignorance, the same kind of willful blindness that caused the disaster in the first place. First came the fateful decision to drill in parts of the earth we do not understand, taking on risks that are beyond our ability to comprehend. Next, when disaster struck, came the decision to use dispersants to sink the oil rather than let it rise to the surface, saving what we do know (the coasts) by potentially sacrificing what we don't know (the depths). And now here we are, squeezing our eyes shut before the results are in, hoping, once again, that what we don't know can't hurt us.

Only about 5 percent of the deep ocean has been explored. The existence of the deep scattering layer — the huge sector of marine life that dwells in the deep but migrates every night toward the surface — was only confirmed by marine biologists in the 1940s. And the revelations are ongoing. Mysterious and otherworldly new species are being discovered all the time.

On board the WeatherBird II, I was constantly struck by the strange simultaneity of discovery and destruction, watching young scientists experiment on fouled sediment drawn up from places science had barely mapped. It's always distressing to witness a beautiful place destroyed by pollution. But there is something particularly harrowing about the realization that we are contaminating places we have never even seen in their natural state. As drilling pushes farther and farther into deep water, risking more disasters in the name of jobs and growth, marine scientists trained to discover the thrillingly unknown will once again be reduced to coroners of the deep, boldly discovering that which we have just destroyed.


Tags: bp, deepwater horizon, environment, environment catastrophe, environmental damage, gulf of mexico, oil spill, scientific investigation, underwarer damage, wildlife

    • Naomi Klein
    • Naomi Klein is an award-winning journalist, syndicated columnist and author of the international bestsellers, The Shock Doctrine: The Rise of Disaster Capitalism and No Logo. Her regular columns for The Nation magazine and the Guardian newspaper are syndicated internation...

    • Naomi Klein's full bio »